Math 250
Name (Print):
Fall 2013

Quiz 7

1. (10 pts) Find a basis for (a) the column space and (b) the null space of the following matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 4 \\
-1 & -1 & -1 \\
-1 & 0 & 2
\end{array}\right]
$$

Ans: The REF form of the matrix is

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

The first and second column of the REF form are independent. So a basis for the colum space is

$$
\left\{\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]\right\}
$$

The vector form of the solution to $A x=0$ is

$$
\left[\begin{array}{c}
\\
2 x_{3} \\
-3 x_{3} \\
x_{3}
\end{array}\right]
$$

So a basis for the null space is

$$
\left\{\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]\right\}
$$

2. (10 pts) Find a generating set for

$$
\left\{\left[\begin{array}{c}
-r+4 t \\
r-s+2 t \\
3 t \\
r-t
\end{array}\right] \in R^{4}, r, s, t \text { are scalars }\right\}
$$

Ans:

$$
\left[\begin{array}{c}
-r+4 t \\
r-s+2 t \\
3 t \\
r-t
\end{array}\right]=r\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right]+s\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
4 \\
2 \\
3 \\
-1
\end{array}\right]
$$

So a generating set is

$$
\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
4 \\
2 \\
3 \\
-1
\end{array}\right]\right\}
$$

